Стройка. Отопление. Сад и огород. Электрика

Основное уравнения динамики вращательного движения. Основное уравнение динамики вращательного движения


Твердое тело можно представить как совокупность материальных точек. При вращении тела все эти точки имеют одинаковые угловые скорости и ускорения. Используя результаты § 7.6, сравнительно несложно получить уравнение движения твердого тела при его вращении вокруг неподвижной оси.
Уравнение движения
Для вывода основного уравнения динамики вращательного движения можно поступить следующим образом. Разделить мысленно тело на отдельные, достаточно малые элементы, которые можно было бы рассматривать как материальные точки (рис. 7.33). Записать для каждого элемента уравнение (7.6.13), и все эти уравнения почленно сложить. При этом внутренние силы, действующие между отдельными элементами, в уравнение движения тела не войдут. Сумма их моментов в результате сложения уравнений окажется равной нулю, так как по третьему закону Ньютона силы взаимодействия равны по модулю и направлены вдоль одной прямой в противоположные стороны. Учитывая далее, что при вращении твердого тела все его точки совершают одинаковые угловые перемещения с одинаковыми скоростями и ускорениями, можно таким образом получить уравнение вращательного движения всего тела.
Однако вывод этого уравнения довольно громоздок, поэтому мы на нем останавливаться не будем. Тем более что это уравнение имеет такую же форму, что и уравнение (7.6.13) для материальной точки, движущейся по окружности:
О"
О"

(7.7.1)
d(J В этом уравнении JI
щих на тело относительно оси вращения.
Читается уравнение (7.7.1) так: производная по времени от момента импульса равна суммарному моменту внешних сил.
Следует иметь в виду, JITO вращение тела вокруг оси могут вызывать лишь силы Ft, лежащие в плоскости, перпендикулярной оси вращения (рис. 7.34). Силы же Fk, направленные параллельно оси вращения, очевидно, способны вызвать лишь перемещение тела вдоль оси. Момент каждой силы Fl равен взятому со знаком плюс или минус произведению модуля этой силы на плечо d, т. е. на длину отрезка перпендикуляра, опу-щенного из точки С оси на линию действия силы Ft:
Mi = ±Ftd. (7.7.2)
Момент силы, вращающий тело вокруг данной оси против часовой стрелки, считается положительным, а по часовой стрелке - отрицательным.
Момент инерции тела
В формулу (7.7.1) входит момент инерции тела J. Момент инерции тела J равен сумме моментов инерции AJ- отдельных малых элементов, на которые можно разбить все тело:
(7.7.3)
і
Так как момент инерции материальной точки
AJ^Amtf, (7.7.4)
где Атпі - масса элемента тела, а г, - его расстояние до оси вращения (см. рис. 7.33), то
J = J A mtrf . (7.7.5)
385
13-Мякишев, 10 кл.
Момент инерции тела зависит не только от массы тела, но и от характера распределения этой массы. Чем больше вытянуто
Рис. 7.35
тело вдоль оси вращения, тем меньше его момент инерции, так как тем ближе к оси вращения расположены отдельные элементы тела. Очевидно также, что, изменив ось вращения тела, мы тем самым изменим и его момент инерции. У твердых тел момент инерции относительно данной оси - постоянная величина. Поэтому изменение момента импульса может происходить лишь за счет изменения угловой скорости. Соответственно уравнение (7.7.1) можно записать в виде:
jft = М. (7.7.6)
Читается это уравнение так: произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно сумме моментов (относительно той же оси) всех внешних сил, приложенных к телу.
Уравнение (7.7.6) показывает, что при вращении тела момент инерции играет роль массы, момент силы - роль силы, а угловое ускорение - роль линейного ускорения при движении материальной точки или центра масс.
В том, что угловое ускорение определяется действительно моментом силы, т. е. силой и плечом, а не просто силой, убедиться нетрудно. Так, раскрутить велосипедное колесо до одной и той же угловой скорости одной и той же силой (напри-мер, усилием пальца) можно гораздо быстрее, если прикладывать силу к ободу колеса (это создает больший момент), а не к спицам вблизи втулки (рис. 7.35).
Для того чтобы убедиться в том, что угловое ускорение определяется именно моментом инерции, а не массой тела, нужно иметь в распоряжении тело, форму которого можно легко изменять, не меняя массы. Велосипедное колесо здесь непригодно. Но можно воспользоваться своим собственным телом. Попробуйте закрутиться на пятке, оттолкнувшись от пола другой ногой. Если вы при этом прижмете руки к груди, то угловая скорость окажется большей, чем если вы раскинете руки в стороны. Эффект будет особенно заметным, если в обе руки взять по толстой книге.
Моменты инерции обруча и цилиндра
Найти момент инерции тела произвольной несимметричной формы довольно сложно. Проще его измерить опытным путем, чем вычислить.
Мы ограничимся вычислением момента инерции тонкого обруча, вращающегося вокруг оси, проходящей через его центр. Если масса колеса сосредоточена главным образом в его ободе (как, например, у велосипедного колеса), то такое колесо приближенно можно рассматривать как обруч, пренебрегая массой спиц и втулки.
Разобьем обруч на N одинаковых элементов. Если т - масса всего обруча, то масса каждого элемента Дmi = ^ . Толщину
обруча будем считать много меньшей ее радиуса (рис. 7.36). Если число элементов выбрать достаточно большим, то каждый элемент можно рассматривать как материальную точку. Поэтому момент инерции произвольного элемента с номером і будет равен:
Д Jt = Дт;Д2. (7.7.7)
Подставляя выражение (7.7.7) в формулу (7.7.5) для полного момента инерции, получим:
N
(7.7.8)
J= Д^Д miR2 = mR2.

Рис. 7.36
Здесь мы учли, что расстояние R для всех элементов одинаково и что сумма
масс элементов равна массе т об-
I
руча.
13*
387
Получился очень простой результат: момент инерции обруча равен произведению его массы на квадрат радиуса. Момент инерции обруча данной массы тем больше, чем больше его радиус. Формула (7.7.8) определяет также момент инерции
полого тонкостенного цилиндра при его вращении вокруг оси симметрии.
Вычисление момента инерции сплошного однородного цилиндра массой тп и радиусом R относительно его оси симметрии представляет более сложную задачу. Мы приведем лишь результат расчета: (7.7.9)
J =\ mR2. Следовательно, если сравнить моменты инерции двух цилиндров одинакового размера и массы, один из которых полый, а другой сплошной, то у второго цилиндра момент инерции будет в два раза меньше. Это связано с тем, что у сплошного цилиндра масса расположена в среднем ближе к оси вращения.
Мы познакомились с уравнением вращательного движения твердого тела. По форме оно похоже на уравнение для поступательного движения твердого тела. Дано определение новых физических величин, характеризующих твердое тело: момента инерции и момента импульса.

При наблюдении сложных движений, например движения тела человека (ходьба, бег, прыжки и т.д.), кажется трудным или даже невозможным описать перемещение всех его точек. Однако, анализируя такие движения, можно заметить, что они состоят из более простых - поступательных и вращательных перемещений.

Механика поступательного движения известна читателю, поэтому раздел начинается с рассмотрения вращательного движения. Наиболее простым является вращение твердого тела вокруг неподвижной оси. Этот случай позволяет ознакомиться со спецификой, терминологией и законами вращательного движения.

5.1. КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ АБСОЛЮТНО ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ

Абсолютно твердым телом называют такое, расстояние между любыми двумя точками которого неизменно.

Размеры и форма абсолютно твердого тела не изменяются при его движении.

Понятие «абсолютно твердое тело» - физическая абстракция, так как любое тело способно к деформациям. Однако во многих случаях деформацией можно пренебречь.

Наиболее простой случай вращательного движения абсолютно твердого тела - вращение относительно неподвижной оси. Это такое движение, при котором точки тела движутся по окружностям, центры которых лежат на прямой, называемой осью вращения.

Известно, что в некоторых случаях для характеристики движения тела необязательно указывать движение всех его точек; так, например, при поступательном движении достаточно указать движение любой одной точки тела.

При вращательном движении вокруг оси точки тела перемещаются по разным траекториям, но за одно и то же время все точки и само тело поворачивается на одинаковый угол. Для характеристики вращения

проведем в плоскости, перпендикулярной оси, радиус-вектор к некоторой точке i (рис. 5.1). Временная зависимость угла α поворота радиуса-вектора относительно некоторого выделенного направления ОХ является уравнением вращательного движения твердого тела вокруг неподвижной оси:

Быстрота вращения тела характеризуется угловой скоростью, равной первой производной от угла поворота радиуса-вектора по времени:

Угловая скорость есть вектор, который направлен по оси вращения и связан с направлением вращения правилом правого винта (рис. 5.2). Вектор угловой скорости в отличие от векторов скорости и силы является скользящим: у него нет определенной точки приложения, и он может быть расположен в любом месте на оси вращения. Таким образом, задание вектора ω указывает положение оси вращения, направление вращения и модуль угловой скорости.

Быстрота изменения угловой скорости характеризуется угловым ускорением, равным первой производной от угловой скорости по времени:

или в векторной форме:

Из (5.4) видно, что вектор углового ускорения совпадает по направлению с элементарным, достаточно малым изменением вектора угловой скорости dω : при ускоренном вращении угловое ускорение направлено так же, как и угловая скорость, при замедленном вращении - противоположно ей.

Так как угловое перемещение всех точек абсолютно твердого тела одинаково, то, согласно (5.2) и (5.3), одновременно все точки тела имеют одинаковую угловую скорость и одинаковое угловое ускорение. Линейные характеристики - перемещение, скорость, ускорение - различны для разных точек. Укажем в скалярном виде связь, которая может быть выведена самостоятельно, между линейными и угловыми характеристиками для i-й точки, движущейся по окружности радиусом r i:

Рис. 5.3

В заключение приведем полученные путем интегрирования соответствующих выражений формулы кинематики вращательного движения твердого тела вокруг неподвижной оси:

уравнение равномерного вращательного движения [см. (5.2)]:

зависимость угловой скорости от времени в равнопеременном вращательном движении [см. (5.3)]:

уравнение равнопеременного вращательного движения [см. (5.1) и (5.6)]:

Полезно сопоставить эти формулы с аналогичными зависимостями для поступательного движения.

5.2. ОСНОВНЫЕ ПОНЯТИЯ. УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Момент силы _

Пусть к некоторой точке i твердого тела приложена сила F^, лежащая в плоскости, перпендикулярной оси вращения (рис. 5.4).

Моментом силы относительно оси вращения называют векторное произведение радиуса-вектора точки i на силу:

Раскрывая его, можно записать:

где β - угол между векторами r i и F i . Так как плечо силы h i = r i sinβ (см. рис. 5.4), то

Если сила действует под некоторым углом α к плоскости вращения (рис. 5.5), то ее можно разложить на две составляющие. Одна из них лежит в плоскости, перпендикулярной оси вращения, а другая параллельна этой этой оси и не оказывает влияния на вращение тела (в реальном случае она действует лишь на подшипники). Далее будут рассматриваться только силы, лежащие в плоскости, перпендикулярной оси вращения.

Рис. 5.4

Рис. 5.5

Работа во вращательном движении

Пусть при действии силы F i (см. рис. 5.4) тело поворачивается на достаточно малый угол dα. Найдем работу этой силы.

Известное из средней школы выражение для работы силы в данном случае следует записать так:

Итак,

элементарная работа силы во вращательном движении равна произведению момента силы на элементарный угол поворота тела.

Если на тело действует несколько сил, то элементарная работа, совершенная всеми ими, определяется аналогично (5.12):

где М - суммарный момент всех внешних сил, действующих на тело.

Если при повороте тела положение радиуса-вектора изменилось от α 1 до α 2 , то работа внешних сил может быть найдена интегрированием выражения (5.13):

Момент инерции

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от распределения ее в пространстве относительно оси. Мера инертности тела при вращении характеризуется моментом инерции тела относительно оси вращения. Укажем сначала, что

моментом инерции материальной точки относительно оси вращения называют величину, равную произведению массы точки на квадрат расстояния ее от оси:

Моментом инерции тела относительно оси называют сумму моментов инерции всех материальных точек, из которых состоит тело:


В качестве примера выведем формулу момента инерции тонкого однородного стержня длиной l и массой т относительно оси, перпендикулярной стержню и проходящей через его середину (рис. 5.6). Выберем достаточно малый участок стержня длиной dx и массой dm, удаленный от оси 00" на расстояние х. Ввиду малости этого участка он может быть принят за материальную точку, его момент инерции [см. (5.15)] равен:

Масса элементарного участка равна произведению линейной плотности т/l, умноженной на длину элементарного участка: dm = (m/l) dx Подставив это выражение в (5.18), получим

Чтобы найти момент инерции всего стержня, проинтегрируем выражение (5.19) по всему стержню, т.е. в пределах от -1/2 до +1/2:

Приведем выражения для моментов инерции разных симметричных тел массой т:

полого однородного цилиндра (обруча) с внутренним радиусом r и внешним R относительно оси ОО", совпадающей с геометрической осью цилиндра (рис. 5.7):

сплошного однородного цилиндра (r = 0) или диска [см. (5.21)]:

однородного шара относительно оси, проходящей через его центр:

прямоугольною параллелепипеда относительно оси ОО", проходящей через его центр перпендикулярно плоскости основания (рис. 5.8):

Во всех перечисленных примерах ось вращения проходит через центр масс тела. При решении задач для определения момента инерции тела относительно оси, не проходящей через центр масс, можно воспользоваться теоремой Гюйгенса. Согласно этой теореме, момент инерции тела относительно некоторой оси OO":

где J 0 - момент инерции относительно параллельной оси, проходящей через центр масс тела OO"; т - масса тела; d - расстояние между двумя параллельными осями (рис. 5.9). Единицей момента инерции является килограмм-метр в квадрате (кг-м 2).

Момент импульса

Моментом импульса (момент количества движения) материальной точки, вращающейся относительно некоторой оси, называется величина, равная произведению импульса точки на расстоянии ее до оси вращения:

Момент импульса тела, вращающегося относительно некоторой оси, равен сумме моментов импульсов точек, из которых состоит данное тело:

Так как угловая скорость всех точек твердого тела одинакова, выне-ся ω за знак суммы [см. (5.29)], получим:

(/ - момент инерции тела относительно оси), или в векторной форме:

Итак, момент импульса равен произведению момента инерции точки на угловую скорость. Отсюда следует, что направления векторов момента импульса и угловой скорости совпадают. Единицей момента импульса является килограмм-метр в квадрате в секунду (кг? м 2 ? с -1).

Формулу (5.31) полезно сравнить с аналогичной формулой для импульса в поступательном движении.

Кинетическая энергия вращающегося тела

При вращении тела его кинетическая энергия складывается из кинетических энергий отдельных точек тела. Для твердого тела:

Полезно сопоставить выражение (5.32) с аналогичным выражением для поступательного движения.

Продифференцировав (5.32), получим элементарное изменение кинетической энергии во вращательном движении:

Основное уравнение динамики вращательного движения

Пусть твердое тело, на которое действовали внешние силы, повернулось на достаточно малый угол da. Приравняем элементарную работу всех внешних сил при таком повороте [см. (5.13)] элементарному изменению кинетической энергии [см. (5.33)]: M = J ω dω , откуда:

Это и есть основное уравнение динамики вращательного движения. Из (5.35) видно, что момент инерции характеризует инерционные свойства тела во вращательном движении: при действии внешних сил угловое ускорение тела тем больше, чем меньше момент инерции тела.

Основное уравнение для вращательного движения играет ту же роль, что и второй закон Ньютона для поступательного. Физические величины, входящие в это уравнение, аналогичны соответственно силе, массе и ускорению.

Из (5.34) следует, что:

Производная от момента импульса тела по времени равна равнодействующему моменту всех внешних сил.

Зависимость углового ускорения от момента силы и момента инерции можно продемонстрировать с по-

мощью прибора, изображенного на рис. 5.10. Под действием груза 1, подвешенного на нити, перекинутой через блок, крестовина ускоренно вращается. Перемещая грузики 2 на разные расстояния от оси вращения, можно изменять момент инерции крестовины. Меняя грузы, т.е. моменты сил, и момент инерции, можно убедиться, что угловое ускорение возрастает при увеличении момента силы или уменьшении момента инерции.

5.3. ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА

Рассмотрим частный случай вращательного движения, когда суммарный момент внешних сил равен нулю. Как видно из (5.37), dL/dt = 0 при М = 0, откуда

Это положение известно под названием закона сохранения момента импульса: если суммарный момент всех внешних сил, действующих на тело, равен нулю, то момент импульса этою тела остается постоянным.

Опуская доказательство, отметим, что закон сохранения момента импульса справедлив не только для абсолютно твердого тела.

Наиболее интересные применения этого закона связаны с вращением системы тел вокруг общей оси. При этом необходимо учитывать векторный характер момента импульса и угловых скоростей. Так, для системы, состоящей из N тел, вращающихся вокруг общей оси, закон сохранения момента импульса можно записать в форме:

Рассмотрим некоторые примеры, иллюстрирующие этот закон.

Гимнаст, выполняющий сальто (рис. 5.11), в начальной фазе сгибает колени и прижимает их к груди, уменьшая тем самым момент инерции и увеличивая угловую скорость вращения вокруг горизонтальной оси, проходящей через центр масс. В конце прыжка тело выпрямляется, момент инерции возрастает, угловая скорость уменьшается. Фигурист, совершающий вращение вокруг вертикальной оси (рис. 5.12), в начале вращения приближает руки к корпусу, тем самым уменьшая момент инерции и увеличивая угловую скорость. В конце вращения происходит обратный процесс: при разведении рук увеличивается момент инерции и уменьшается угловая скорость, что позволяет легко остановиться.

Такое же явление может быть продемонстрировано на скамье Жуковского, которая представляет собой легкую горизонтальную платформу, вращающуюся с малым трением вокруг вертикальной оси. При изменении положения рук изменяются момент инерции и угловая скорость (рис. 5.13), момент импульса остается постоянным. Для усиления демонстрационного эффекта в руках человека гантели. На скамье Жуковского можно продемонстрировать векторный характер закона сохранения момента импульса.

Экспериментатор, стоящий на неподвижной скамье, получает от помощника велосипедное колесо, вращающееся вокруг вертикальной оси (рис. 5.14, слева). В этом случае момент импульса системы человек и платформа-колесо определяется только моментом импульса колеса:

здесь J ч - момент инерции человека и платформы; J K и ω κ - момент инерции и угловая скорость колеса. Так как момент внешних сил относительно вертикальной оси равен нулю, то L сохраняется (L = const).

Если экспериментатор повернет ось вращения колеса на 180° (рис. 5.14, справа), то момент импульса колеса будет направлен противоположно первоначальному и равен J K ω K . Так как вектор момента импульса колеса изменяется, а момент импульса системы сохраняется, то неизбежно должен измениться и момент импульса, человека и платформы, он уже не будет равен нулю 1 . Момент импульса системы в этом случае

1 Небольшим несовпадением оси колеса с осью вращения платформы можно пренебречь.


По формуле (5.42) можно приближенно оценить момент инерции тела человека вместе с платформой, для чего необходимо измерить ω κ , ω 4 и найти J k . Способ измерения угловых скоростей равномерного вращения известен читателю. Зная массу колеса и предполагая, что в основном масса распределена по ободу, по формуле (5.22) можно определить J k . Для уменьшения ошибки можно утяжелить обод велосипедного колеса, проложив по нему специальные шины. Человек должен располагаться симметрично оси вращения.

Более простой вариант рассмотренной демонстрации состоит в том, что человек, стоящий на скамье Жуковского, сам приводит во вращение колесо, которое он держит на вертикальной оси. При этом человек и платформа начинают вращаться в противоположные стороны (рис. 5.15).

5.4. ПОНЯТИЕ О СВОБОДНЫХ ОСЯХ ВРАЩЕНИЯ

Тело, вращающееся вокруг фиксированной оси, в общем случае действует на подшипники или другие устройства, которые сохраняют неизменным положение этой оси. При больших угловых скоростях и моментах инерции эти воздействия могут быть значительными. Однако в любом теле можно выбрать такие оси, направление которых при вращении будет сохраняться без каких-либо специальных устройств. Чтобы понять, какому условию должен удовлетворять выбор таких осей, рассмотрим следующий пример.

Сопоставляя (5.43) с координатами центра масс, замечаем, что силы, действующие на ось, уравновешиваются, если ось вращения проходит через центр масс.

Таким образом, если ось вращения проходит перпендикулярно стержню через центр масс, то воздействия на эту ось со стороны вращающегося тела не будет. Если при этом убрать подшипники, то ось вращения начнет перемещаться, сохраняя неизменным положение в пространстве, а тело будет продолжать вращение вокруг этой оси.

Оси вращения, которые без специального закрепления сохраняют свое направление в пространстве, называют свободными. Примерами таких осей являются оси вращения Земли и волчка, ось всякого брошенного и свободно вращающегося тела и т.п.

У тела произвольной формы всегда имеется по крайней мере три взаимно перпендикулярные оси, проходящие через центр масс, которые могут быть свободными осями вращения. Эти оси называют главными осями инерции. Хотя все три главные оси инерции являются свободными, наиболее устойчивым будет вращение вокруг оси с наибольшим моментом инерции. Дело в том, что в результате неизбежного действия внешних сил, например трения, а также в связи с тем, что трудно задать вращение точно вокруг определенной оси, вращение вокруг остальных свободных осей неустойчиво.

В некоторых случаях, когда тело вращается около свободной оси с малым моментом инерции, оно само изменяет эту ось на ось с наибольшим моментом.

Это явление демонстрируют следующим опытом. К электродвигателю подвешена на нити цилиндрическая палочка, которая может вращаться вокруг своей геометрической оси (рис. 5.17, а). Момент инерции относительно этой оси J 1 = тR 2 /2. При достаточно большой угловой скорости палочка изменит свое положение (рис. 5.17, б). Момент инерции относительно новой оси равен J 2 = ml 2 /12. Если l 2 >6R 2 , то и J 2 > J 1 . Вращение вокруг новой оси будет устойчивым.

Читатель может самостоятельно на опыте убедиться, что вращение брошенной спичечной коробки устойчиво относительно оси, проходящей перпендикулярно большей грани, и неустойчиво или менее устойчиво относительно осей, проходящих перпендикулярно другим граням (см. рис. 5.8).

Вращение животных и человека в свободном полете и при различных прыжках происходит вокруг свободных осей с наибольшим или наименьшим моментом инерции. Так как положение центра масс зависит от позы тела, то при разных позах будут и различные свободные оси.

5.5. ПОНЯТИЕ О СТЕПЕНЯХ СВОБОДЫ

Положение свободной материальной точки в пространстве задается тремя независимыми координатами: х, у, z. Если точка не свободна, а перемещается, например, по некоторой поверхности, то не все три координаты будут независимыми.

Независимые переменные, характеризующие положение механической системы, называют степенями свободы.

У свободной материальной точки три степени свободы, в рассмотренном примере - две степени свободы. Так как молекулу одноатомного газа можно рассматривать как материальную точку, следовательно, такая свободная молекула тоже имеет три степени свободы.

Еще некоторые примеры.

Две материальные точки 1 и 2 жестко связаны друг с другом. Положение обеих точек задано шестью координатами x 1 , y 1 , z 1 , x 2 , y 2 , z 2 , на которые наложены одно ограничение и одна связь, математически выражаемая в форме уравнения:

Физически это означает, что расстояние между материальными точками всегда l. В этом случае число степеней свободы равно 5. Рассмотренный пример является моделью двухатомной молекулы.

Три материальные точки 1, 2 и 3 жестко связаны друг с. другом. Девять координат характеризуют положение такой системы: x 1 , y 1 , z 1 , x 2 , y 2 , z 2 , x 3 , y 3 , z 3 . Однако три связи между точками обусловливают независимость только шести координат. Система имеет шесть степеней свободы. Так как положение трех точек, не лежащих на одной прямой, однозначно определяет положение твердого тела, то и твердое тело имеет шесть степеней свободы.

Такое же число степеней свободы (шесть) имеют трехатомные и многоатомные молекулы, если эти молекулы рассматривать как жесткие образования.

1 Если для зависимой координаты из (5.44) получают мнимую величину, это означает, что выбранные независимые координаты не соответствуют каким-либо точкам, расположенным на сфере заданного радиуса.

В реальных многоатомных молекулах атомы находятся в колебательных движениях, поэтому число степеней свободы таких молекул более шести.

Число степеней свободы определяет не только число независимых переменных, характеризующих положение механической системы, но и, что очень важно, число независимых перемещений системы. Так, три степени свободы свободной материальной точки означают, что любое перемещение точки можно разложить на независимые перемещения по трем осям координат. Так как точка не имеет размеров, то говорить о ее вращении не имеет смысла. Итак, материальная точка имеет три степени свободы поступательного движения. Материальная точка на плоскости, сфере или иной поверхности имеет две степени свободы поступательного движения. Перемещение материальной точки вдоль кривой (условный пример - движение поезда по рельсам) соответствует одной степени свободы поступательного движения.

Твердое тело, вращающееся вокруг неподвижной оси, имеет одну степень свободы вращательного движения. Колесо поезда имеет две степени свободы: одна - вращательного движения, а другая - поступательного (перемещение оси колеса вдоль рельса). Шесть степеней свободы твердого тела означают, что любое перемещение этого тела можно разложить на составляющие: перемещение центра масс раскладывается на три поступательных движения по осям координат, а вращение состоит из трех более простых поворотов относительно осей координат, проходящих через центр масс.

На рис. 5.18-5.20 показаны шарнирные соединения, соответствующие одной, двум и трем степеням свободы.

Рис. 5.18

Рис. 5.19

Рис. 5.20

5.6. ЦЕНТРИФУГИРОВАНИЕ

Центрифугированием называется процесс разделения (сепарации) неоднородных систем, например частиц от жидкостей, в которых они находятся, обусловленный их вращением.

Рассмотрим разделение неоднородных систем в поле силы тяжести. Предположим, что имеется водная суспензия частиц различной плотности. Со временем благодаря действию силы тяжести и выталкивающей силы F A происходит расслаивание частиц: частицы с большей, чем у воды, плотностью тонут, частицы с меньшей, чем у воды, плотностью всплывают. Результирующая сила, действующая, например, на более плотную отдельную частицу, равна:

где ρ 1 - плотность вещества частицы; ρ - плотность воды; V - объем частицы.

Если значения ρ 1 и ρ мало отличаются друг от друга, то сила F p мала и расслоение (осаждение) происходит достаточно медленно. В центрифуге (сепараторе) такое разделение производят принудительно, вращая разделяемую среду.

Рассмотрим физику этого явления.

Пусть рабочий объем центрифуги (рис. 5.21: а - внешний вид; б - схема рабочего объема) полностью занят какой-либо однородной жидкостью. Выделим мысленно небольшой объем V этой жидкости, находящийся на расстоянии r от оси вращения OO". При равномерном вращении центрифуги на выделенный объем кроме силы тяжести и выталкивающей силы, которые уравновешивают друг друга, действует центростремительная сила. Это сила со стороны окружающей объем жидкости. Она, естественно, направлена к оси вращения и равна:

где ρ - плотность жидкости.

Предположим теперь, что выделенный объем V - это сепарируемая частица, плотность вещества которой ρ 1 (ρ 1 Φ ρ). Сила, действующая на частицу со стороны окружающей жидкости, не изменится, как это видно из формулы (5.45).

Для того чтобы частица вращалась вместе с жидкостью, на нее должна действовать центростремительная сила, равная:

где m 1 - масса частицы, а ρ 1 - соответствующая ей плотность.

Рис. 5.21

Если F > F 1 , то частица перемещается к оси вращения. Если F < F 1 , то воздействия на частицу со стороны жидкости будет недостаточно, чтобы удержать ее на круговой траектории, и частица по инерции начнет перемещаться к периферии. Эффект сепарации определяется превышением силы F, действующей со стороны жидкости на выделенную частицу, над тем значением центростремительной силы F 1 , которое обусловливает движение по окружности:

Это выражение показывает, что эффект центрифугирования тем больше, чем больше различие плотностей сепарируемых частиц и жидкости, а также существенно зависит от угловой скорости вращения 1 .

Сравним разделение центрифугированием с разделением с помощью силы тяжести:

1 Сила тяжести и выталкивающая сила при выводе формулы (5.47) не учитываются, так как они направлены вдоль оси вращения и не оказывают принципиального влияния на центрифугирование.

Ультрацентрифуги способны разделить частицы размером менее 100 нм, взвешенные или растворенные в жидкости. Они нашли широкое применение в медико-биологических исследованиях для разделения биополимеров, вирусов и субклеточных частиц.

Быстрота сепарации особенно важна в биологических и биофизических исследованиях, так как со временем может существенно измениться состояние изучаемых объектов.

Тема 3.Элементы механики твердого тела.

Лекция №5.

Кинематические соотношения

Определение момента силы.

Момент инерции, момент импульса твёрдого тела.

Кинематические соотношения.

Твердое тело можно рассматривать как систему материальных точек, жестко скрепленных друг с другом. Характер его движения может быть различным.

В основном различают поступательно и вращательное движения .

При поступательном движении все точки тела движутся по параллельным траекториям, так что для описания движения тела в целом достаточно знать закон движения одной точки. В частности, такой точкой может служить центр масс твердого тела

При вращательном (более сложном!) движении все точки тела описывают концентрические окружности, центры которых лежат на одной оси. Скорости точек на любой той окружности связаны с радиусами этих окружностей и угловой скоростью
вращения: . Так как твердое тело при вращении сохраняет свою форму, радиусы вращения остаются постоянными и линейное ускорение будет равно:

. (1)

Определение момента силы.

Для описания динамики вращательного движения твердого тела необходимо ввести понятия моментов силы.

Определение 1.

Моментом – силы – , приложенной к материальной точке т.А , относительно произвольной точки т.О , проведенного из точки т.О к точке т.А :

Примечание.

Модуль векторного произведения, то есть собственно величина момента, определяется произведением – , а направлениемомента даётся определением правой тройки векторов .

Определение 2.

Моментом силы – , приложенной в точке т.А, относительно произвольной оси называется векторное произведение радиуса-вектора и составляющей силы , лежащих в плоскости, перпендикулярной оси и проходящей через точку т.А:

.

Основное уравнение динамики вращательного движения.

Пусть имеется твердое тело произвольной формы, которое может вращаться вокруг оси ОО . Разбивая тело на малые элементы, можно заметить, что все они вращаются вокруг оси ОО в плоскостях, перпендикулярных оси вращения с одинаковой угловой скоростью w .

Движение каждого из отдельных элементов малой массы m i описывается вторым законом Ньютона.

Для i -го элемента имеем:


где f ik (k = 1,2, ...N) представляют собой внутренние силы взаимодействия всех

Элементов с выбранным, а F i - равнодействующая всех внешних сил, действующих на i - элемент.

Скорость v i каждого элемента вообще говоря может меняться как угодно, но поскольку тело является твердым, то смещения точек в направлении радиусов вращения можно не рассматривать. Поэтому спроектируем уравнение (1) на направление касательной к окружности вращения и умножим обе части уравнения на r i :

В правой части получившегося уравнения произведения типа представляют собой моменты внутренних сил относительно оси вращения, т.к. r i и f it взаимно перпендикулярны. Аналогично произведения являются моментами внешних сил, действующих на i -элемент.

Просуммируем в уравнении движения по всем элементам, на которые было разбито тело.

Сумму моментов внутренних сил можно разбить по парам слагаемых, обязанных своим возникновением взаимодействию двух симметричных элементов тела между собой. Их моменты равны и противоположно направлены. На основании этого можно сделать вывод, что при сложении всех моментов внутренних сил они попарно уничтожатся. Суммарный момент всех внешних сил обозначим S М i , где M i = [ r i × F i ].

Левая часть уравнения (2) с учетом соотношения (1) в предыдущем разделе представляется в таком виде:

= = , (3)

где момент инерции.

Уравнение (3) есть основное уравнение вращательного движения .

4.Момент инерции твёрдого тела .

Определение 1.

Величина называется моментом инерции твердого тела относительно заданной оси.

Величина, равная произведению массы точки и квадрата расстояния от нее до оси вращения , называется моментом инерции точки относительно этой оси

При использовании момента силы и момента инерции равенство принимает вид

Сравнивая это выражение со вторым законом Ньютона для поступательного движения, приходим к выводу, что при описании вращательного движения с помощью углового ускорения роль массы выполняет момент инерции , а роль силы момент силы .

Установим теперь связь между угловым ускорением и моментом сил, действующих на тело, вращающееся вокруг неподвижной оси (рис.5).

Рисунок 5

Разобьем мысленно тело на малые элементы массами , которые можно считать материальными точками, т.е. будем рассматривать твердое тело как систему материальных точек с неизменными расстояниями между ними. При вращении тела вокруг неподвижной оси его точки двигаются по окружностям радиусов , которые лежат в плоскостях, перпендикулярных оси вращения.

Пусть на каждую точку действует внешняя сила и сумма внутренних сил со стороны остальных частиц системы.

Поскольку точки движутся по плоским окружностям с тангенциальными ускорениями , то это ускорение вызывают касательные составляющие сил и .

Запишем второй закон Ньютона для тангенциального ускорения i - й точки

Умножив обе части последнего равенства на и выразив тангенциальные ускорения точек через угловое (), одинаковое для всех точек тела, получим:

Просуммируем по всем точкам системы, учитывая, что сумма моментов всех внутренних сил равна нулю. Действительно, все внутренние силы можно сгруппировать на попарно равные и противоположно направленные. Силы каждой пары лежат на одной прямой, поэтому имеют одинаковые плечи, а значит равные, но противоположно направленные моменты. В результате получаем уравнение вращательного движения твердого тела вокруг неподвижной оси как системы материальных точек

Сумма моментов внешних сил, действующих на тело, равна моменту результирующей этих сил относительно оси OO ′:

Моментом инерции тела относительно некоторой оси называют сумму моментов инерции всех его точек относительно той же оси :

С учетом полученных соотношений, определяющих понятия момента инерции тела и суммарного момента сил M , имеем:

Это выражение называют уравнением динамики вращательного движения твердого тела вокруг неподвижной оси. Вектор углового ускорения тела совпадает по направлению с вектором момента сил M относительно неподвижной оси, а момент инерции тела – величина скалярная, следовательно, предыдущее уравнение можно записать в векторной форме:



Из этого уравнения можно выразить угловое ускорение

Полученное уравнение (*) называют вторым законом Ньютона для вращательного движения твердого тела . Отличие от поступательного движения заключается в том, что вместо линейного ускорения используется угловое, роль силы выполняет момент силы , а роль массы – момент инерции .

В динамике поступательного движения равными силами считаются те, которые сообщают телам равной массы одинаковые ускорения. При вращательном движении одна и та же сила может сообщать телу разные угловые ускорения в зависимости от того, как далеко лежит линия действия силы от оси вращения. Поэтому, например, велосипедное колесо легче привести в движение, прикладывая силу к ободу, чем к середине спицы. Разные тела получают под действием одинаковых моментов сил одинаковые угловые ускорения, если равны их моменты инерции. Момент инерции зависит от массы и ее распределения относительно оси вращения . Поскольку угловое ускорение обратно пропорционально моменту инерции, то при прочих равных условиях тело легче привести в движение, если его масса сконцентрирована ближе к оси вращения.

5. Момент инерции частицы и твердых тел: стержня, цилиндра, диска, шара

Каждое тело независимо от того, вращается оно или находится в состоянии покоя, обладает определенным моментом инерции относительно любой выбранной оси подобно тому, как тело имеет массу независимо от его состояния движения или покоя. Таким образом, момент инерции является мерой инертности тела при вращательном движении . Очевидно, что проявляется момент инерции только тогда, когда на тело начинает действовать момент внешних сил, который вызывает угловое ускорение. Согласно определению момент инерции – величина аддитивная . Это означает, что момент инерции тела относительно некоторой оси равен сумме моментов инерции отдельных его частей . Отсюда следует метод расчета моментов инерции тел .

Для вычисления момента инерции необходимо мысленно разбить тела на достаточно малые элементы , точки которых лежат на одинаковом расстоянии от оси вращения, затем найти произведение массы каждого элемента и квадрата его расстояния до оси и, наконец, просуммировать все произведения. Чем больше элементов берется, тем точнее метод. В случае, когда тело разбивается на бесконечно большое количество бесконечно малых элементов , суммирование заменяется интегрированием по всему объему тела

Для тела с неравномерным распределением массы формула дает среднюю плотность.

В этом случае плотность в данной точке определяется как предел отношения массы бесконечно малого элемента к его объему

Расчет момента инерции произвольных тел является довольно трудоемкой задачей. Приведем в качестве примера вычисление моментов инерции некоторых однородных тел правильной геометрической формы относительно их осей симметрии. Вычислим момент инерции сплошного цилиндра (диска) радиусом R , толщиной h и массой m относительно оси, проходящей через центр перпендикулярно основанию цилиндра. Разобьем цилиндр на тонкие кольцевые слои радиусом r и толщиной dr (рис.6, а ).

Рисунок 6, а

где – масса всего слоя. Объем слоя (), где h – высота слоя. Если плотность материала цилиндра ρ , то масса слоя будет равна

Для вычисления момента инерции цилиндра необходимо просуммировать моменты инерции слоев от центра цилиндра (), до его края (), т.е. вычислить интеграл:и е )

Рисунок 6, е

«Физика - 10 класс»

Угловое ускорение.


Ранее мы получили формулу, связывающую линейную скорость υ, угловую скорость ω и радиус R окружности, по которой движется выбранный элемент (материальная точка) абсолютно твёрдого тела, которое, вращается относительно неподвижной оси:

Мы знаем, что линейные скорости и ускорения точек твёрдого тела различны. В то же время угловая скорость всех точек твёрдого тела одинакова.

Угловая скорость - векторная величина. Направление угловой скорости определяется по правилу буравчика. Если направление вращения ручки буравчика совпадает с направлением вращения тела, то поступательное движение буравчика указывает направление вектора угловой скорости (рис. 6.1).

Однако равномерное вращательное движение встречается довольно редко. Гораздо чаще мы имеем дело с движением, при котором угловая скорость изменяется, очевидно, это происходит в начале и конце движения.

Причиной изменения угловой скорости вращения является действие на тело сил. Изменение угловой скорости со временем определяет угловое ускорение .

Bектор угловой скорости - это скользящий вектор. Независимо от точки приложения его направление указывает направление вращения тела, а модуль определяет быстроту вращения,

Среднее угловое ускорение равно отношению изменения угловой скорости к промежутку времени, за которое это изменение произошло:

При равноускоренном движении угловое ускорение постоянно и при неподвижной оси вращения характеризует изменение угловой скорости по модулю. При увеличении угловой скорости вращения тела угловое ускорение направлено в ту же сторону, что и угловая скорость (рис. 6.2, а), а при уменьшении - в противоположную (рис. 6.2, б).

Так как угловая скорость связана с линейной скоростью соотношением υ = ωR, то изменение линейной скорости за некоторый промежуток времени Δt равно Δυ =ΔωR. Разделив левую и правую части уравнения на Δt, имеем или а = εR, где а - касательное (линейное) ускорение , направленное по касательной к траектории движения (окружности).

Если время измерено в секундах, а угловая скорость - в радианах в секунду, то одна единица углового ускорения равна 1 рад/с 2 , т. е. угловое ускорение выражается в радианах на секунду в квадрате.

Неравномерно движутся при запуске и остановке любые вращающиеся тела, например ротор в электродвигателе, диск токарного станка, колесо автомобиля при разгоне и др.


Момент силы.


Для создания вращательного движения важно не только значение силы, но также и точка её приложения. Отворить дверь, оказывая давление около петель, очень трудно, в то же время вы легко её откроете, надавливая на дверь как можно дальше от оси вращения, например на ручку. Следовательно, для вращательного движения существенно не только значение силы, но и расстояние от оси вращения до точки приложения силы. Кроме этого, важно и направление приложенной силы. Можно тянуть колесо с очень большой силой, но так и не вызвать его вращения.

Момент силы - это физическая величина, равная произведению силы на плечо:

M = Fd,
где d - плечо силы, равное кратчайшему расстоянию от оси вращения до линии действия силы (рис. 6.3).

Очевидно, что момент силы максимален, если сила перпендикулярна радиус-вектору, проведённому от оси вращения до точки приложения этой силы.

Если на тело действует несколько сил, то суммарный момент равен алгебраической сумме моментов каждой из сил относительно данной оси вращения.

При этом моменты сил, вызывающих вращение тела против часовой стрелки, будем считать положительными (сила 2), а моменты сил, вызывающих вращение по часовой стрелке, - отрицательными (силы 1 и 3) (рис. 6.4).

Основное уравнение динамики вращательного движения. Подобно тому как опытным путём было показано, что ускорение тела прямо пропорционально действующей на него силе, было установлено, что угловое ускорение прямо пропорционально моменту силы:

Пусть на материальною точку, движующуюся по окружности, действует сила (рис. 6.5). Согласно второму закону Ньютона в проекции на касательное направление имеем mа к = F к. Умножив левую и правую части уравнения на r, получим ma к r = F к r, или

mr 2 ε = М. (6.1)

Заметим, что в данном случае r - кратчайшее расстояние от оси вращения до материальной точки и соответственно точки приложения силы.

Произведение массы материальной точки на квадрат расстояния до оси вращения называют моментом инерции материальной точки и обозначают буквой I.

Таким образом, уравнение (6.1) можно записать в виде I ε = М, откуда

Уравнение (6.2) называют основным уравнением динамики вращательного движения .

Уравнение (6.2) справедливо и для вращательного движения твёрдого тела , имеющего неподвижную ось вращения, где I - момент инерции твёрдого тела, а М - суммарный момент сил, действующих на тело. В этой главе при расчёте суммарного момента сил мы рассматриваем только силы или их проекции, принадлежащие плоскости, перпендикулярной оси вращения.

Угловое ускорение, с которым вращается тело, прямо пропорционально сумме моментов сил, действующих на него, и обратно пропорционально моменту инерции тела относительно данной оси вращения.

Если система состоит из набора материальных точек (рис. 6.6), то момент инерции этой системы относительно данной оси вращения ОО" равен сумме моментов инерции каждой материальной точки относительно этой оси вращения: I = m 1 r 2 1 + m 2 r 2 2 + ... .

Момент инерции твёрдого тела можно вычислить разделив тело на малые объёмы, которые можно считать материальными точками, и просуммировать их моменты инерции относительно оси вращения. Очевидно, что момент инерции зависит от положения оси вращения.

Из определения момента инерции следует, что момент инерции характеризует распределение массы относительно оси вращения.

Приведём значения моментов инерции для некоторых абсолютно твёрдых однородных тел массой m.

1. Момент инерции тонкого прямого стержня длиной l относительно оси, перпендикулярной к стержню и проходящей через его середину (рис. 6.7), равен:

2. Момент инерции прямого цилиндра (рис. 6.8), или диска относительно оси ОО", совпадающей с геометрической осью цилиндра или диска:

3. Момент инерции шара

4. Момент инерции тонкого обруча радиусом R относительно оси, проходящей через его центр:

Момент инерции по физическому смыслу во вращательном движении играет роль массы, т. е. он характеризует инертность тела по отношению к вращательному движению. Чем больше момент инерции, тем сложнее тело заставить вращаться или, наоборот, остановить вращающееся тело.