Стройка. Отопление. Сад и огород. Электрика

Методы изучения организации геномов. Введение в геномику

Как наука генетика возникла на рубеже XIX и XX веков. Многие официальной датой ее рождения считают 1900 год, когда Корренс, Чермак и де Фриз независимо друг от друга обнаружили определенные закономерности в передаче наследственных признаков. Открытие законов наследственности состоялось, по существу, вторично - еще в 1865 году чешский ученый-естествоиспытатель Грегор Мендель получил те же результаты, экспериментируя с садовым горохом. После 1900 года открытия в области генетики следовали одно за другим, исследования, посвященные строению клетки, функциям белков, строению нуклеиновых кислот, открытых Мишером в 1869 году, шаг за шагом приближали человека к разгадке тайн природы, создавались новые научные направления, совершенствовались новые методы. И, наконец, в конце XX века генетика вплотную подошла к решению одного из фундаментальных вопросов биологической науки - вопроса о полной расшифровке наследственной информации о человеке.

В реализации грандиозного проекта по расшифровке генетического кода ДНК, получившего название HUGO (Human Genome Organization) приняли участие 220 ученых из разных стран, в том числе и пять советских биологов. В нашей стране была создана собственная программа «Геном человека», руководителем которой стал академик Александр Александрович Баев.

Впервые идея организации подобной программы была выдвинута в 1986 году. Тогда идея показалась неприемлемой: геном человека, то есть совокупность всех его генов содержит около трех миллиардов нуклеотидов, а в конце 80-х годов затраты на определение одного нуклеотида составляли около 5 долларов США. Кроме того технологии 80-х позволяли одному человеку определять не более 100 000 нуклеотидов в год. Тем не менее, уже в 1988 году Конгресс США одобрил создание американского проекта исследований в этой области, руководитель программы Дж. Уотсон так определил ее перспективы: «Я вижу исключительную возможность для улучшения человечества в ближайшем будущем». Осуществление российской программы началось в 1989 году.

Сейчас определение одного нуклеотида обходится всего в один доллар, созданы аппараты, способные секвенировать (от лат. sequi - следовать) до 35 млн. последовательностей нуклеотидов в год. Одним из важных достижений стало открытие так называемой полимеразной цепной реакции, позволяющей из микроскопических количеств ДНК за несколько часов получить объем ДНК, достаточный для генетического анализа. По оценкам специалистов существует возможность завершения проекта через 15 лет, и уже сейчас программа приносит полезные результаты. Суть работ заключается в следующем: сначала проводится картирование генома (определение положения гена в хромосоме), локализация некоторых генов, а после этого секвенирование (определение точной последовательности нуклеотидов в молекуле ДНК). Первым геном, который удалось локализовать, стал ген дальтонизма, картированный в половой хромосоме в 1911 году. К 1990 году число идентифицированных генов достигло 5000, из них картированных 1825, секвенированных - 460. Удалось локализовать гены, связанные с тяжелейшими наследственными болезнями, такими, как хорея Гентингтона, болезнь Альцгеймера, мышечная дистрофия Дюшена, кистозный фиброз и др.


Таким образом, проект исследования генома человека имеет колоссальное значение для изучения молекулярных основ наследственных болезней, их диагностики, профилактики и лечения. Следует обратить внимание на то, что за последние десятилетия в индустриально развитых странах доля наследственных болезней в общем объеме заболеваний значительно увеличилась. Именно наследственностью обусловлена предрасположенность к раковым и сердечно-сосудистым заболеваниям. В значительной степени это связано с экологической ситуацией, с загрязнением окружающей среды, так как многие отходы промышленности и сельского хозяйства являются мутагенами, то есть изменяют человеческий генофонд. Учитывая современный уровень развития генетики можно предположить, что научные открытия будущего позволят путем изменения генома адаптировать человека к неблагоприятным условиям внешней среды. Что же касается борьбы с наследственными заболеваниями, то их лечение путем замены больных генов на здоровые кажется реальным уже сейчас. Все это означает, что человек получит возможность не только изменять живые организмы, но и конструировать новые формы жизни. В связи с этим возникает целый ряд серьезных вопросов.

На мой взгляд одним из наиболее важных вопросов является вопрос об использовании генетической информации в коммерческих целях. Несмотря на то, что и участники проекта HUGO, и представители международных организаций, в частности ЮНЕСКО, единодушны в том, что любые результаты исследований по картированию и секвенированию генома должны быть доступны всем странам и не могут служить источником прибыли, частный капитал начинает играть все большую роль в генетических исследованиях. Когда появилась программа HUGO, возникли так называемые геномные компании, которые занялись самостоятельно занялись расшифровкой генома. В качестве примера можно привести американскую организацию под названием Institute of Genomic Research (TIGR) или компанию Human Genome Sciences Inc. (HGS). Между крупными фирмами идет ожесточенная борьба за патенты. Так в октябре 1994 Крэк Вентер, глава вышеупомянутой компании TIGR, о том, что в распоряжении его корпорации находится библиотека из 35000 фрагментов ДНК, синтезированных с помощью РНК на генах, полученных лабораторным путем. Эти фрагменты сравнили с 32 известными генами наследственных заболеваний. Оказалось, что 8 из них полностью идентичны, а 19 гомологичны. TIGR оказался обладателем ценнейшей научной информации, но его руководители заявили, что химическое строение всех последовательностей из этой библиотеки засекречено и будет сделано достоянием гласности только в том случае, если за компанией будет признано право собственности на все 35000 фрагментов. Это не единственный случай, а между тем, развитие генетики намного опережает развитие соответствующей законодательной базы. Хотя шаги в этом направлении предпринимаются (в России, например, в конце 1996 года был принят закон "О государственном регулировании в области генно-инженерной деятельности", в1995 был принят закон о биоэтике во Франции, в США Акт о гражданских правах запрещает дискриминацию при найме на работу по расовым, половым, религиозным и национальным признакам, при этом ген серповидноклеточной анемии, в частности у негров, может считаться расовым признаком, другой закон запрещает дискриминацию при найме на работу лиц с пониженной трудоспособностью, а таковыми могут считаться и лица с отягощенной наследственностью, большое значение имеет так называемый принцип Тарасовой, обязывающий врачей нарушать конфиденциальность врачебных сведений с целью предотвращения возможного вреда обществу), международных актов, регулирующих все стороны деятельности, связанной с генетикой, пока не существует.

25 апреля теперь уже далекого 1953 г. журнал Nature опубликовал небольшое письмо молодых и никому неизвестных Ф.Крика и Дж.Уотсона редактору журнала, которое начиналось словами: «Мы хотели бы предложить свои соображения по поводу структуры соли ДНК. Эта структура имеет новые свойства, которые представляют большой биологический интерес». Статья содержала около 900 слов, но – и это не преувеличение – каждое из них было на вес золота.

«Ершистая молодежь» посмела выступить против нобелевского лауреата Лайнуса Полинга, автора знаменитой альфа-спирали белков. Полинг буквально накануне опубликовал статью, согласно которой ДНК представляла собой трехцепочечную спиральную структуру, наподобие девичьей косы. Тогда никто не знал, что у Полинга был просто недостаточно очищенный материал. Но и Полинг оказался отчасти прав – сейчас трехцепочечность некоторых участков наших генов хорошо известна. Это свойство ДНК даже пытались одно время использовать в борьбе с раком, выключая с помощью олигонуклеотидов те или иные раковые гены (онкогены).

Биологии нуклеиновых кислот долго не везло. Достаточно сказать, что первую нобелевскую премию за открытие строения нуклеотидов немец А.Коссель получил еще в 1910 г. А знаменитая реакция Фельгена для окрашивания ДНК была предложена накануне Первой мировой войны и усовершенствована в 1920-е гг. Тогда и могла бы начаться новая эра биологии, однако...

Однако биологи были уверены, что «монотонная» ДНК с ее только четырьмя различающимися основаниями просто не могла нести генетическую информацию о миллионах самых разнообразных белков. И хотя уже применялась азбука Морзе с тремя кодирующими элементами, менталитет исследователей еще не достиг уровня информационной эры с ее двоичной системой записи («0» и «1») любой информации.

Лишь к началу 1950-х гг. отдельные ученые стали обращать внимание на ДНК, роль которой в передаче наследственных признаков у микроорганизмов установил в 1943 г. Освальд Эйвери. Результатам Эйвери поверил Сальвадор Лурия, который вместе с Максом Дельбрюком организовал неподалеку от Нью-Йорка лабораторию на биостанции в местечке Колд-Спринг Харбор.

Заметим в скобках, что физик М.Дельбрюк был учеником Н.В. Тимофеева-Ресовского в биологии и соавтором их совместной с К.Циммером знаменитой статьи, посвященной определению размеров гена. Лурия с Дельбрюком изучали жизненный цикл бактериофагов – вирусов микроорганизмов, в результате чего и пришли к предположениям о биологической роли ДНК. Лурия послал своего аспиранта Джеймса Уотсона в Кавендишскую лабораторию в Кембридже, где Морис Уилкинс и Розалинд Франклин исследовали строение ДНК с помощью рентгена (англичане лидировали в рентгеноструктурном анализе биомолекул).

В лаборатории Уилкинса работал также еще довольно молодой физик Фрэнсис Крик, известный в узких лабораторных кругах своим научным скепсисом: для него просто не существовало никаких авторитетов, чем он и заработал себе репутацию скандалиста. Статью Полинга в лабораторию принес его сын, который помог, кстати, Уотсону и Крику уяснить роль попарного комплементарного соединения азотистых оснований. Статья стала последней каплей перед озарением, или пониманием... тем, что оформилось в открытие молодых ученых.

Научное сообщество, однако, не сразу признало их открытие. Достаточно сказать, что сначала Нобелевскую премию за работы в области ДНК «судьи» из Стокгольма присудили в 1959 г. известным американским биохимикам Северо Очоа и Артуру Корнбергу. Очоа был первым (1955), кто сумел синтезировать рибонуклеиновую кислоту (РНК). Корнберг же получил премию за синтез ДНК в пробирке (1956).

В 1962 г. настал черед Крика, Уотсона и Уилкинса. Р.Франклин к тому времени уже умерла от рака в возрасте 37 лет, иначе это был бы единственный случай в истории Нобелевских премий, когда награду вручили бы четверым, хотя это и не допускается уставом. Вклад Франклин в развитие рентгеноструктурного анализа ДНК был просто неоценим.

После открытия Уотсона и Крика важнейшей проблемой стало выявление соответствия между первичными структурами ДНК и белков. Поскольку в составе белков обнаруживается 20 аминокислот, а нуклеиновых оснований всего 4, то для записи информации о последовательности аминокислот в полинуклеотидах необходимо не менее трех оснований. На основании таких общих рассуждений варианты «трехбуквенных» генетических кодов предложили физик Г.Гамов и биолог А.Нейфах. Однако их гипотезы были чисто умозрительными и не вызвали большого отклика среди ученых.

Трехбуквенный генетический код к 1964 г. расшифровал Ф.Крик. Вряд ли он тогда предполагал, что в обозримом будущем станет возможной расшифровка генома человека. Эта задача долгое время казалась неразрешимой. Однако два открытия позволили сдвинуть проблему с места.

В 1970 г. не известные широкой научной общественности Г.Темин и Д.Балтимор опубликовали в Nature статьи, посвященные обратной транскриптазе (ОТ) – ферменту РНК-содержащих, в том числе раковых, вирусов, которые синтезируют ДНК на матрице РНК, т.е. осуществляют реакцию, обратную той, которую до тех пор наблюдали в клетках.

Открытие обратной транскриптазы позволило выделить первые гены. Но процесс этот был крайне трудоемким и чрезвычайно дорогим. А спустя 15 лет некий химик из Калифорнии предложил на суд коллег уникальную полимеразную цепную реакцию (ПЦР), сразу же ставшую знаменитой. В этой реакции фермент, полимераза, «ходит как челнок» по фрагменту ДНК, поэтому ПЦР позволяет нарабатывать любые количества этого фрагмента, необходимые для анализа*.

ПЦР, а также появление новейшей электронной техники и компьютеров сделали вполне реальной задачу расшифровки всего генома человека. Долгие дебаты закончились в конце сентября 1988 г., когда во главе проекта HUGO – Организации по расшифровке генома человека – был поставлен Дж.Уотсон.

Журнал Time назвал в связи с этим Уотсона «охотником за генами». Сам же ученый сказал следующее: «Это захватывающая перспектива. Тридцать лет назад мы не могли и мечтать о том, чтобы узнать структуру генома даже мельчайшего вируса. А сегодня мы уже расшифровали геном вируса СПИДа и почти полностью прочитали геном кишечной палочки объемом в 4,5 млн букв ген-кода. Точное знание детальной структуры генома человека – это восхитительно!».

И вот геном прочитан
Завершение работ по расшифровке генома человека консорциумом ученых планировалось к 2003 г. – 50-летию открытия структуры ДНК. Однако конкуренция сказала свое слово и в этой области.

Крейг Вентер основал частную компанию «Селера», которая продает генные последовательности за большие деньги. Включившись в гонку по расшифровке генома, она за один год сделала то, на что у международного консорциума ученых из разных стран ушло десять лет. Это стало возможным благодаря новому методу чтения генетических последовательностей и использованию автоматизации процесса чтения.

Итак, геном прочитан. Казалось бы, надо радоваться, но ученые пришли в недоумение: уж очень мало генов оказалось у человека – примерно в три раза меньше, чем ожидалось. Раньше думали, что генов у нас около 100 тыс., а на самом деле их оказалось около 35 тыс. Но даже не это самое главное.

Недоумение ученых понятно: у дрозофилы 13 601 ген, у круглого почвенного червя – 19 тыс., у горчицы – 25 тыс. генов. Столь малое количество генов у человека не позволяет выделить его из животного царства и считать «венцом» творения.

Зато там, где располагаются гены, активность ДНК и ферментов, синтезирующих ее копии в виде молекул информационной РНК, повышается в 200–800 раз! Это – «горячие точки» генома.

В геноме человека ученые насчитали 223 гена, которые сходны с генами кишечной палочки. Кишечная палочка возникла примерно 3 млрд лет назад. Зачем нам такие «древние» гены? Видимо, современные организмы унаследовали от предков какие-то фундаментальные структурные свойства клеток и биохимические реакции, для которых необходимы соответствующие белки.

Нет поэтому ничего удивительного и в том, что половина белков млекопитающих имеют сходство аминокислотных последовательностей с белками мухи дрозофилы. В конце концов мы дышим одним и тем же воздухом и потребляем животные и растительные белки, состоящие из одних и тех же аминокислот.

Удивительно, что с мышью мы имеем 90% общих генов, а с шимпанзе – вообще 99%!

В нашем геноме много последовательностей, доставшихся нам в «наследство» от ретровирусов. Эти вирусы, к которым относятся вирусы рака и СПИДа, вместо ДНК в качестве наследственного материала содержат РНК. Особенностью ретровирусов является, как уже говорилось, наличие обратной транскриптазы. После синтеза ДНК по РНК вируса вирусный геном встраивается в ДНК хромосом клетки.

Таких ретровирусных последовательностей у нас много. Время от времени они «вырываются» на волю, в результате чего возникает рак (но рак в полном соответствии с законом Менделя проявляется лишь у рецессивных гомозигот, т.е. не более чем в 25% случаев). Совсем недавно было сделано открытие, которое позволяет понять не только механизм встраивания вирусов, но и назначение некодирующих последовательностей ДНК. Оказалось, что для встраивания вируса необходима специфическая последовательность из 14 букв генетического кода. Таким образом, можно надеяться, что вскоре ученые научатся не только блокировать агрессивные ретровирусы, но и целенаправленно «внедрять» нужные гены, и генотерапия из мечты превратится в реальность.

В организме млекопитающих ретровирусы играют и еще одну немаловажную роль. В отношении млекопитающих, у которых плод развивается внутри организма матери, правомерен вопрос: почему иммунная система матери позволяет развиваться организму, который наполовину генетически ей чужероден, поскольку половина генома плода отцовская?

Все дело в ретровирусах, которые блокируют активность иммунных Т-лимфоцитов, ответственных за отторжение органов и тканей, содержащих чужеродные белки, например, после трансплантации органов. Эти ретровирусы активируются в геноме клеток плаценты, которая образуется тканями плода.

Недавно был обнаружен вирус, который блокирует развитие (экспрессию) ретровируса. Если этим вирусом-блокатором заразить беременную мышь, то мышата рождаются нормальными и в срок. Но если его ввести в клетки плаценты, то происходит выкидыш плода, так как активируются Т-лимфоциты матери.

Не стоит забывать, что ретровирусные последовательности возникают также непосредственно на концах хромосом – теломерах. Как известно, теломеры состоят из одноцепочечной ДНК, которая синтезируется ферментом теломеразой по матрице РНК. Считается, что теломеры являются нашими молекулярными часами, поскольку они укорачиваются с каждым клеточным делением. Раньше считалось, что в теломерах нет генов, однако расшифровка генома показала, что генов там довольно много и они активны в детстве и молодом возрасте, постепенно «угасая» по мере старения организма.

Не так уж бездеятельны и тандемные повторы. В норме они имеют определенное число повторяющихся троек, пятерок и даже семерок букв. Но в некоторых случаях в результате мутаций число повторов начинает нарастать, что ведет к нестабильности генома. Дело доходит даже до «поломок» концов хромосом. Фрагментация концевых участков хромосомы может привести к перемещениям (транслокации) участков ДНК в другую хромосому, а также синтезу таких форм белка, которые вызывают гибель нервных клеток, как это наблюдается при наследственной хорее Гентингтона.

К.Вентер говорил, что понимание генома потребует сотни лет. Ведь мы до сих пор не знаем функций и роли более чем 25 тыс. генов. И даже не знаем, как подступиться к решению этой задачи, поскольку большинство генов просто «молчит» в геноме, никак себя не проявляя.

Следует учитывать, что в геноме накопилось множество псевдогенов и генов-«перевертышей», которые также неактивны. Похоже, что некодирующие последовательности являются как бы изолятором активных генов. В то же время, хотя генов у нас и не слишком много, они обеспечивают синтез до 1 млн (!) самых разных белков. Как же это достигается при таком ограниченном наборе генов.

Как оказалось, в нашем геноме существует специальный механизм – альтернативный сплайсинг. Заключается он в следующеем. На матрице одной и той же ДНК происходит синтез разных альтернативных и-РНК. Сплайсинг и означает «расщепление», когда образуются разные молекулы РНК, которые как бы «расщепляют» ген на разные варианты. Этот приводит к невообразимому разнообразию белков при ограниченном наборе генов.

Функционирование генома человека, как и всех млекопитающих, регулируется различными транскрипционными факторами – специальными белками. Эти белки связываются с регуляторной частью гена (промотером) и таким образом регулируют его активность. Одни и те же факторы могут по-разному проявлять себя в разных тканях. У человека есть свои собственные, присущие только ему, транскрипционные факторы. Выявить эти чисто человеческие особенности генома еще только предстоит ученым.

СНП
Существует и еще один механизм генетического разнообразия, который выявился только в процессе прочтения генома. Это сингулярный нуклеотидный полиморфизм, или, так называемые факторы СНП.

Полиморфизмом в генетике называют ситуацию, когда гены одного и того же признака существуют в разных вариантах. Примером полиморфизма, или, другими словами, множественных аллелей, служат группы крови, когда в одном хромосомном локусе (участке) могут находиться варианты генов А, В или О.

Сингулярность по-латыни означает одиночество, что-то единственное. СНП – это изменение «буквы» генетического кода без «последствий для здоровья». Считается, что у человека СНП встречается с частотой 0,1%, т.е. каждый человек отличается от других одним нуклеотидом на каждую тысячу нуклеотидов. У шимпанзе, представляющей собой более древний вид, и к тому же гораздо более гетерогенный, число СНП при сравнении двух разных особей достигает 0,4%.

Но если различия в СНП не сказываются на здоровье особей, то чем они интересны и важны? Во-первых, изучение СНП имеет большое теоретическое значение. Именно они позволяет сравнивать возрасты популяций и определять пути их миграции. Так, например, в мужской половой хромосоме (Y) выделены 22 фактора СНП, анализ которых у 1007 европейцев позволил определить, что 80% европейских мужчин имеют сходный «СНП-паттерн», т.е. «рисунок». Это говорит о том, что тысячи поколений назад 4/5 европейских мужчин имели общего предка!

Но и практическое значение СНП велико. Возможно, не все знают, что сегодня самые распространенные лекарства эффективны не более чем для четверти населения. Минимальные генетические отличия, обусловленные СНП, определяют эффективность лекарств и их переносимость в каждом конкретном случае. Так, у больных диабетом выявили 16 специфических СНП. Всего при анализе 22-й хромосомы определили местоположение 2730 СНП. В одном из генов, кодирующих синтез рецептора адреналина, выявлено 13 СНП, которые могут комбинироватьcя друг с другом, давая 8192 различных варианта (гаплотипа).

Насколько скоро и полно начнет использоваться полученная информация, пока не совсем ясно. Пока же приведем еще один конкретный пример.

Среди астматиков довольно популярно лекарство албутерол, который взаимодействует с указанным рецептором адреналина и подавляет приступ удушья. Однако из-за разнообразия гаплотипов людей лекарство действует не на всех, а некоторым больным оно вообще противопоказано. Это обусловлено СНП: люди с последовательностью букв в одном из генов ТЦТЦЦ (Т–тимин, Ц–цитозин) не реагируют на албутерол, если же концевой цитозин заменен на гуанин (ТЦТЦГ), то реакция есть, но частичная. Для людей же с тимином вместо концевого цитозина в этом участке – ТЦТЦТ – лекарство токсично!

Протеомика
Эта совершенно новая отрасль биологии, изучающая структуру и функции белков и взаимосвязи между ними, названа по аналогии с геномикой, занимавшейся геномом человека. Само рождение протеомики уже объясняет, зачем нужна была программа «Геном человека». Поясним на примере перспективы нового направления.

В далеком 1962 г. вместе с Уотсоном и Криком в Стокгольм были приглашены из Кембриджа Джон Кэндрью и Макс Перутц. Они были удостоены Нобелевской премии по химии за впервые осуществленную расшифровку трехмерной структуры белков миоглобина и гемоглобина, ответственных за перенос кислорода в мышцах и эритроцитах соответственно.

Напомним, что даже в начале 1990-х гг. расшифровка структуры каждого нового белка представляла значительные трудности. Каждый анализ занимал до десятка лет. И хотя сейчас вместо рентгеновских лучей используют ядерно-магнитный резонанс (ЯМР), однако времени и денег на определение пространственной структуры каждого белка уходит очень много.

Протеомика позволяет ускорить и удешевить эти работы. К.Вентер отметил, что он 10 лет потратил на выделение и секвенирование гена адреналинового рецептора человека, теперь же его лаборатория тратит на это 15 с. Еще в середине 90-х гг. нахождение «адреса» гена в хромосомах занимало 5 лет, в конце 90-х – полгода, а в 2001 г. – одну неделю! Кстати, ускорению определения положения гена помогает информация о СНП, которых сегодня насчитываются уже миллионы.

Вернемся к протеомике. Знание аминокислотных последовательностей и трехмерной структуры определенных белков позволило разработать программы сопоставления генетических последовательностей с аминокислотными, а затем программы предположительного расположения их в трехмерной структуре полипептидов. Знание трехмерной структуры позволяет быстро находить химические варианты молекул, в которых блокирован, например, активный центр, или определять положение активного центра у мутантного фермента.

Известно, что повышение артериального давления вызывается ферментом АСЕ, сокращенное название которого переводится с английского как ангиотензин-конвертирующий фермент. Образующийся под действием фермента ангиотензин воздействует на стенки артерии, что и ведет к гипертонии. Уже относительно давно были найдены блокаторы фермента АСЕ, которые стали продаваться в качестве лекарств от повышенного давления. Однако, эти лекарственные средства оказались малоэффективными.

Анализ генома позволил выделить ген АСЕ-2, который кодирует более распространенный и эффективный вариант фермента. Затем была определена виртуальная структура белкового продукта, после чего подобраны химические вещества, активно связывающиеся с белком АСЕ-2. Так был найден новый препарат против артериального давления, причем за вдвое меньшее время и всего лишь за 200 вместо 500 млн долларов!

Признаемся, что это был пример «догеномного» периода. Теперь же, после прочтения генома, на первый план выходит протеомика, цель которой – быстрее разобраться с тем миллионом белков, которые потенциально могут существовать в наших клетках. Протеомика позволит более тщательно диагностировать генетические отклонения и блокировать неблагоприятное действие мутантных белков на клетку.

А со временем можно будет планировать и «исправление» генов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение в геномику. Геном человека, основные черты организации. Методы изучения генома человека

Значение программы изучения генома человека для практической медицины.

21 век - это эра геномики - время, когда последовательность ДНК в геноме человека определена почти полностью, время, когда анализируется роль тысяч генов человека в норме и при болезнях. Наступает время персонифицированной медицины - когда изучение небольших вариаций во многих генах приведет к выявлению индивидуальной предрасположенности человека к той или иной патологии.

Важнейшие события генетики 20 века, инициирующие изучение генома:

Открытие двойной спирали ДНК (Дж. Уотсон, Фр. Крик, 1953)

Разработка метода секвенирования ДНК - 1997 г.

Выделение эмбриональных стволовых клеток человека (1998)

Решающим достижением молекулярной биологии стала разработка методов секвенирования ДНК в 1977 г.

Международный проект Геном человека официально стартовал в 1990 году. Огромный вклад внесли ученые 6 стран - США, Великобритании, Франции, Германии, Японии и Китая. К 2001 г. просеквенировано 90% с точностью 99,99%. К 2003 г. секвенировано 99% генома человека. Осталось около 400 брешей.

В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК.

Двадцать две аутосомные хромосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд. пар оснований .

Полное секвенирование выявило, что человеческий геном содержит 20--25 тыс. активных генов , что значительно меньше, чем ожидалось в начале проекта (порядка 100 тыс.) -- то есть только 1,5 % всего генетического материала кодирует белки. Остальная часть (97%) является некодирующей ДНК, которую часто называют мусорной ДНК . Геном человека -- совокупность наследственного материала, заключенного в клетке человека.

Вообще слово «геном» относится к общему содержанию ДНК у данного вида, включая не только гены, но и всю остальную ДНК. У человека, например, на долю кодирующих белки последовательности приходится только 1,25% всего генома. Что же представляет человеческий геном?

На долю интронов приходится до 20-25%. Но значительную часть межгенной ДНК занимают регуляторные последовательности.

Классификации генов:

Гены активные и репрессированные

Основная масса генов, активно функционирующих в большинстве клеток организма на протяжении онтогенеза,-- это гены, которые обеспечивают синтез белков общего назначения (белки рибосом, гистоны, тубулины и т. д.), тРНК и рРНК. Такие гены называют конститутивными. Работа другой группы генов, контролирующих синтез специфических белков, зависит от различных регулирующих факторов. Их называют регулируемыми генами. Изменение условий может привести к активации «молчащих» генов и репрессии активных. Дифференцированная экспрессия генома у млекопитающих обусловливает развитие огромного множества типов тканей.

Кодирующие белки и РНК

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома .

Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включая транспортную РНК (tRNA), рибосомную РНК, микро РНК (microRNA) и прочие не кодирующие белок РНК последовательности.

Структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка.

Гены «домашнего хозяйства» и гены «роскоши».

Все гены разделяют на гены "домашнего хозяйства" и гены "роскоши".

Гены "домашнего хозяйства" кодируют то, что всегда нужно любой клетке независимо от ткани. Гены «домашнего хозяйства» (housekeeping genes) -- это гены, необходимые для поддержания важнейших жизненных функций организма, которые экспрессируются практически во всех тканях и клетках на относительно постоянном уровне. Гены домашнего хозяйства функционируют повсеместно, на всех стадиях жизненного цикла организма.

По разным оценкам таких генов у человека 10-20 тыс. Это гистоновые гены, гены tРНК, rРНК и т.п.

Гены "роскоши", которых заведомо больше в 2-3 раза, это гены, которые экспрессируются в клетках определенных тканей и в определенное время. Например, все гены белковых гормонов - гены "роскоши".

Регуляторные последовательности -- последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.

В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию гена. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры).

Сайленсер (англ. Silencer) -- последовательность ДНК, с которой связываются белки-репрессоры (факторы транскрипции). Связывание белков-репрессоров с сайленсерами приводит к понижению или к полному подавлению синтеза РНК.

Инсулляторы

Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК в виде 2-6 кольцевых молекул. Хромосомы человека. Размер хромосом варьирует от 45 миллионов до 280 миллионов пн.

Хромосома не гомогенна. В ней чередуются участки эухроматина (не плотные участки) и гетерохроматина (более плотный). При дифференциальной окраске по длине хромосомы выявляется ряд окрашенных (гетерохроматин) и неокрашенных (эухроматин) полос. Характер поперечной исчерченности, получаемый при этом, позволяет идентифицировать каждую хромосому в наборе, так как чередование полос и их размеры строго индивидуальны и постоянны для каждой пары.

ЭУХРОМАТИН, вещество хромосомы, сохраняющее деспирализованное (диффузное) состояние в покоящемся ядре и спирализующееся при делении клеток. Содержит большинство структурных генов организма.Гетерохроматин - протяженные участки повторяющихся и высоко конденсированных последовательностей, которые не кодируют никаких белков.

Классификация гетерохроматина:

Факультативный (В зависимости от стадий клеточного цикла, типа клеток, один и тот же участок хромосомы может быть в состоянинии как гетеро-, так и эухроматина. Такие участки хромосом называют факультативным гетерохроматином.

Конститутивный (околоцентромерный, теломерный) Участки, которые всегда уплотнены. Эти участки хромосом содержат тандемно повторяющуюся ДНК (расположенные друг за другом «голова к хвосту»).

Околоцентромерный гетерохроматин состоит из коротких тандемных повторов длиной до 20 п.о., организованных в длинные блоки (по 100-200 тандемов). Блоки образуют ряды длиной от 250 тыс. до 5 млн. пн. Такой тип ДНК называется сателлитной, альфоидной (альфа-сателлитной). Составляют 3% генома. В местах расположения сателлитной ДНК возможна максимальная компактизация, все четыре уровня упаковки ДНК представлены даже в интерфазе. По сателлитной ДНК происходит кроссинговер между гомологичными хромосомами.

Теломемры (от др.-греч. фЭлпт -- конец и мЭспт -- часть) -- минисателлиты - концевые участки хромосом. У большинства эукариот теломеры состоят из коротких тандемных повторов.и содержат тысячи 6-нуклеотидных повторов: у человека - TTAGGG, (для сравнения у всех насекомых -- TTAGG, у растений -- TTTAGGG). Они повторяются от 250 до 1500 раз.

С теломерами связано несколько белков, образующих защитный «колпачок» - теломерный комплекс, который предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы и защищая всю хромосому от разрушения. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию.

В каждом цикле деления теломеры клетки укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого конца. ДНК-полимераза может начать синтез цепи только с РНК-праймера. После окончания синтеза ДНК РНК-праймеры на отстающей цепи удаляются, а пропуски заполняются ДНК-полимеразой. Однако на конце цепи такой пропуск заполняться не может. Поэтому 3" участки ДНК остаются однонитевыми, а 5"недореплицированными. Следовательно, КАЖДЫЙ РАУНД РЕПЛИКАЦИИ БУДЕТ ПРИВОДИТЬ К УМЕНЬШЕНИЮ КОНЦОВ ХРОМОСОМЫ. Данный феномен носит название концевой недорепликации и является одним из важнейших факторов биологического старения. Так, у новорожденного длина теломер варьирует около 15 тысяч пн при хронических заболеваниях снижается до 5 т.н.п. Ученые из университета Кардиффа (Cardiff University) установили, что критическая длина человеческой теломеры, при которой хромосомы начинают соединяться друг с другом, составляет 12-13 теломерных повторов .

При таком критическом укорочении теломер нарушается структура хромосом, могут повреждаться прилегающие гены и начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние покоя - необратимой остановки клеточного цикла. В результате клетка может умереть или перестать делиться. Это происходит в большинстве нормальных соматических клеток, которые имеют ограниченную способность к размножению. В состояние такого покоя клетку могут привести многие стимулы -- дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др.

Однако в зародышевых, половых и стволовых клетках имеется специальный фермент - теломераза, способный восстанавливать теломерные последовательности, которые укорачиваются при каждом акте репликации.

Защитные механизмы концевой недорепликации.

Существует специальный фермент -- теломераза (РНК+белок), который при помощи собственной РНК-матрицы достраивает теломерные повторы и удлиняет теломеры. В большинстве дифференцированных клеток теломераза заблокирована, однако активна в стволовых и половых клетках.

Считается, что реактивация теломеразы -- важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит пролиферации. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что чаще всего приводит к злокачественным новообразованиям. Активные теломеразы обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. Поэтому в настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы.

За открытие защитных механизмов хромосом от концевой недорепликации с помощью теломер и теломеразы в 2009 году присуждена Нобелевская премия по физиологии и медицине австралийке, работающей в США, Элизабет Блекберн (Elizabeth Blackburn), американке Кэрол Грейдер (Carol Greider) и её соотечественнику Джеку Шостаку (Jack Szostack).

Кроме того, в последние годы теломерная ДНК стала предметом пристального изучения из за того, что была обнаружена связь между укорочением теломер и старением.

Другие классы тандемных повторов являются генами для РНК, например, рибосомальной. Эти гены локализованы в ЯОР 5 пар акроцентрических хромосом.

Другая группа повторов - диспергированные повторяющиеся последовательности, которые разбросаны по всему геному по отдельности, а не тандемно. Они являются подвижными (мобильными) генетическими элементами - ретротранспозонами. 15% генома занимают длинные диспергированные элементы - LINE, 12% - короткие SINE. Эти последовательности производят ферменты - эндонуклеазы, способные делать надрезы в ДНК и встраивать туда свои последовательности. Встраивание МГЭ в ДНК способно нарушить функцию гена. У человека известно около 30 ретротранспозиций, вызывающих болезни. Почему же геном не избавляется от таких опасных участков? Повторяющиеся последовательности и МГЭ являются важным источником ремоделирования генома.

Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.

Все гены по функциям подразделяются на структурные и функциональные.

Структурные гены несут информацию о строении белков и РНК.

Среди функциональных генов выделяют:

гены-модуляторы, усиливающие или ослабляющие работу структурных генов (супрессоры (ингибиторы), активаторы, модификаторы);

гены, регулирующие работу структурных генов (регуляторы и операторы).

геном недорепликация белок

Размещено на Allbest.ru

...

Подобные документы

    Генетическая терминология, организация генома вирусов, понятие о лизогенном и литическом цикле. Особенности генома и жизненного цикла ретровирусов, геном бактерий. Современные представления о геноме человека: теоретические и практические аспекты.

    презентация , добавлен 04.04.2011

    Определение нуклеотидной последовательности генома человека. Идентификация генов на основе физического, хромосомного и функционалного картирования, клонирования и секвенирования. Новая отрасль биологии - протеомика. Изучение структуры и функции белков.

    лекция , добавлен 21.07.2009

    Организация генома и кодируемые белки вируса иммунодефицита человека. Транскрипция провирусной дезоксирибонуклеиновой кислоты и синтез вирусных веществ. Анализ получения сыворотки и плазмы крови. Характеристика референсных сиквенсов и электрофореграмм.

    дипломная работа , добавлен 04.06.2017

    Классификация и свойства генов, особенности структурных и регуляторных генов. Структурные единицы наследственности организмов. Особенности генома человека. Наследственный материал, заключенный в клетке человека. Уровни структурной организации хромосом.

    презентация , добавлен 28.10.2014

    Амплификация как важный механизм увеличения объема генома. Роль горизонтального переноса генетического материала в эволюции генома. Значение сохранения дозового баланса генов в генотипе для формирования фенотипа. Взаимодействия между генами в генотипе.

    реферат , добавлен 24.02.2010

    Определение возможности развития заболеваний с наследственной предрасположенностью. Создание международной программы "Геном человека". Электромагнитная среда обитания человека. Оценка риска, связанного с использованием ГМО в продуктах питания человека.

    реферат , добавлен 01.03.2012

    Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа , добавлен 08.11.2009

    Общие черты методов изучения наследственности человека, наследственные заболевания и их профилактика. Природа материальных носителей наследственности, механизмы их проявления и изменения. Генеалогический, близнецовый и цитогенический методы исследования.

    курсовая работа , добавлен 06.10.2010

    Строение молекулы ДНК. Ферменты генетической инженерии. Характеристика основных методов конструирования гибридных молекул ДНК. Введение молекул ДНК в клетку. Методы отбора гибридных клонов. Расшифровка нуклеотидной последовательности фрагментов ДНК.

    реферат , добавлен 07.09.2015

    Кодирование информации в анализаторах. Слуховой анализатор: информация звукового стимула в виде нейронного возбуждения. Обезболивающая (антиноцицептивная) система. Роль генома в пластических изменениях нервной ткани. Физиологическое значение эмоций.

Геном человека

Расшифровка генома человека – событие столь же важное в истории человечества, как открытие электричества, изобретение радио или создание компьютеров.

Немного истории. В 1988 году Национальный институт здоровья США начал проект «Геном человека» , возглавил который нобелевский лауреат Джеймс Уотсон . Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека.

Планировалось, что работа но определению нуклеотидной последовательности ДНК человека (секвенирование ДНК ) должна окончиться в 2005-м году . Однако после первого года работы стало ясно, что скорости секвениронания ДНК очень низкие и для полного завершения работы такими темпами потребуется около 100 лет .

Стало очевидно, что необходим поиск новых технологий секвенирования, создание новой вычислительной техники и оригинальных компьютерных программ. Это было невыполнимо в рамках отдельно взятого государства , и к программе подключились другие страны.

Широкомасштабные координированные исследования стали проводиться под эгидой международной организации ^ Human Genom Organisation (HUGO). С 1989 г. в проект включилась и Россия. Все хромосомы человека были поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы . В проекте оказались задействованы несколько тысяч ученых из 20 стран .

В 1996 были созданы всемирные банки данных по ДНК человека. Любая вновь определенная последовательность нуклеотидов размером более 1 тыс. оснований должна была быть обнародована через Интернет в течение суток после ее расшифровки, в противном случае статьи с этими данными в научные журналы не принимались. Любой специалист в мире мог воспользоваться этой информацией.

К началу 1998 г. было секвенировано всего около ^ 3% генома . В это время к работе неожиданно подключилась частная американская компания из штата Мериленд «Celera Genomics» под руководством Крега Вентера , которая объявила, что закончит свою работу на 4 года раньше международного консорциума.

Началась беспримерная в науке гонка. Два коллектива работали независимо, не жалея сил, чтобы придти к финишу первыми. В ходе выполнения проекта «Геном человека» было разработано много новых методов исследования, большинство из которых значительно ускоряет и удешевляет работу по расшифровке ДНК. Эти методы анализа сейчас используются в медицине, криминалистике и т.д.

В июне 2000 года два конкурирующих коллектива объединили свои данные, официально объявив о завершении работ. А в феврале 2001 года появились научные публикации чернового варианта структуры генома человека. Качество секвенирования достаточно высокое и предполагает всего 1 ошибку на 50 тыс.п.н .

«Геном человека» вошел в историю как один из самых трудоемких и дорогостоящих проектов. На него было потрачено в сумме более ^ 6 миллиардов долларов.

Возникает естественный вопрос: геном какого же человека определен в результате этих титанических усилий, кто этот конкретный человек? Согласно имеющимся данным, фирма Celera в основном ориентировалась на геном одного человека, о котором известно лишь, что это белый мужчина среднего возраста. Скорее всего, это был сам глава корпорации Крег Вентер. Международный консорциум использовал в своей работе материал не менее семи различных людей.

Геном человека состоит из 24 хромосом и 3,2 млрд. п.н. Хромосомы человека были пронумерованы согласно размеру : наибольший - у хромосомы 1, наименьший - у хромосомы 22. Со временем выяснилось, что хромосома 22 содержит больше ДНК, чем хромосома 21, но порядок нумерации не стали менять, чтобы не вносить путаницу. Отдельно идут две половые хромосомы: X и Y (условно их можно назвать томами № 23 и № 24 Энциклопедии человеческого генома).

^ В геноме женщин содержится лишь 23 хромосомы из 24-х , и все они представлены в соматических клетках двумя экземплярами. У мужчин в клетках содержится полная Энциклопедия человека, все 24 хромосомы, но две из них (хромосомы X и Y) существуют в единичных экземплярах.

Разные хромосомы сильно отличаются друг от друга по числу и свойствам генов (в первой, самой большой, хромосоме содержится 263 млн. п.н., составляющих 2237 гена, а в 21 хромосоме – 50 млн.п.н. и 82 гена). www . ensembl . org

Также отличаются хромосомы и по важности записанной в них информации. Число генов, ассоциируемых с различными болезнями больше всего в Х хромосоме – 208; в 1 хмс – 157; и в 11 хмс – 135. Меньше всего таких генов в Y хмс – всего 3. Тем не менее, только совокупность всех хромосом обеспечивает клетки полной информацией, позволяющей человеку нормально развиваться и жить. В отсутствие любой из пар хромосом жизнь конкретного индивидуума становится невозможной.

При потере по каким-либо причинам только одной из пары хромосом состояние человека сильно отличается от нормы. Например, частичная моносомия 5-ой хромосомы приводит к синдрому кошачьего крика . У детей с этой аномалией отмечается необычный плач, что обусловлено изменением гортани, а также черепа и лица.

В клетках человека также имеется ДНК , расположенная не в хромосомах, а в митохонд-риях. Это тоже часть генома человека, называемая М-хромосомой . В отличие от ядерного генома митохондриальные гены располагаются компактно, как в геноме бактерий, и имеют свой собственный генетический код (своеобразный «генетический жаргон»). МитДНК ответственна в клетке за синтез всего лишь нескольких белков. Но эти белки очень важны для клетки, поскольку участвуют в обеспечении клетки энергией.

Предполагают, что митохондрии появились в клетках эукариот в результате симбиоза высших организмов с аэробными бактериями.

МитДНК передается из поколения в поколение только по женской линии . При оплодотворении в яйцо проникает сперматозоид с набором отцовских хромосом, но без отцовских митохондрий. Только яйцеклетка предоставляет зароды-шу свою митДНК. Поэтому митДНК удобно использовать для определения степени родства как внутри вида, так и между различными таксонами.

Одной из целей исследования генома человека являлось построение точной и подробной карты всех хромосом. Генетическая карта представляет собой схему, описывающую порядок расположения на хромосоме генов и других генетических элементов. (снипсы-повторы-гены ).

В кодировании белков принимает участие не более 1,5 % хромосомной ДНК человека (т.е. генетические инструкции по формированию человеческого индивидуума занимают лишь 3 см на двухметровой молекуле ДНК человека ).

Анализ генома человека позволил выявить у него порядка ^ 40 тыс . генов (на сегодня). Самые короткие гены содержат всего 20 п.н. (гены эндорфинов , вызывающих ощущение удовольствия). Самый длинный ген, кодирующий один из белков мышц (миодистрофин), содержит порядка 2,5 млн. п.н.

^ Плотность расположения генов в хромосомах сильно различается. Средняя плотности составляет около 10 генов на 1 млн.п.н. Однако в хромосоме 19 плотность составляет 20 генов , а в Y-хромосоме - всего 1,5 гена на млн. Если сравнить плотность генов с плотностью расселения людей, то Y-хромосома напоминает нашу Сибирь, а хромосома 19 - Европейскую часть России. Плотность расположения генов падает по мере эволюционного усложнения организмов. Для сравнения: в геноме бактерий содержится свыше 1000 генов на 1,0 млн. и. н., у дрожжей около 450 генов на 1,0 млн. п. н., а у червя С. elegans - около 200 .

Как у людей имеются семьи, так и гены объединяют в семейства по их схожести. В геноме человека присутствуют около 1,5 тыс. таких семейств. Причем только около сотни из них специфичны для человека и позвоночных животных. Основная же масса генных семейств имеется как у человека, так и у дождевого червя.

Разные гены одного семейства возникали в ходе эволюции из одного гена-предшественника как следствие мутаций. «Родственные» гены чаще всего выполняют сходную функцию. Например, геном человека имеет около 1 000 генов-рецепторов обоняния.

В семействах генов иногда встречаются псевдогены . Это гены, утратившие способность к экспрессии. Перед их названием ставят греческую букву . He совсем ясно, зачем геному нужны такие гены, почему он сохранил их в эволюции и не избавился от них. В геноме человека имеется около 20 000 таких псевдогенов . В частности, в огромной семействе генов обоняния около 60% являются псевдогенами. Считается, что массивная потеря функциональных генов произошла за последние 10 млн. лет в связи со снижением роли обоняния у человека по сравнению с другими млекопитающими.

Около 20 % генов человека функционируют во всех типах клеток человека. Остальные же гены работают только в определенных тканях и органах. Например, глобиновые гены экспрессируются только в клетках крови, поскольку основная их функция – обеспечивать перенос кислорода.

Примером высочайшей специализации генов служат обонятельные гены . В каждой клетке органа обоняния человека – обонятельной луковице - работает только 1 ген из 1000 возможных. Сильнейшее недоумение ученых вызвал тот факт, что некоторые из этих генов, кроме обонятельной луковицы, активизируются еще в одном типе клеток – сперматозоидах . Как это связано с восприятием запаха, пока не совсем ясно.

Картирование хромосом также позволило выявить локализацию участков, отвечающих за некоторые болезни человека.

Например, в первой хромосоме гены связанны с раком протоков молочной железы. Во второй – с ожирением. В третьей – с шизофренией. В четвертой хромосоме обнаружен ген, мутации которого приводят к развитию алкоголизма. Мутации в концевом участке Х -хромосомы вызывают предрасположенность к гомосекесуализму.

Внимание специалистов также привлекли гены, связанные с некоторыми особенностями поведения человека . Эти гены кодируют белки, участвующие в передаче сигналов между нервными клетками (например, белок серотонин). Ген, кодирующий рецептор серотонина, ученые назвали «геном самоубийства». Мутации по этому гену вызывают у людей склонностью к отрицательным эмоциям и суицидные наклонности.

Другой передатчик сигналов в нервной системе - дофамин – вещество, играющего ключевую роль в работе центров удовольствия мозга. Избыток дофамина вызывает у животных исследовательскую гиперактивность.. Было обнаружено, что один из генов, кодирующих белки-рецепторы дофамина, может существовать в разных аллельных формах (длинной и короткой). Люди с длинной аллелью больше склонны к поиску новых впечатлений, поэтому обнаруженный ген так и назвали «геном поиска новизны». У американцев длинная аллель гена рецептора дофамина встречается в 25 раз чаще, чем, скажем, у жителей Южной и Восточной Азии. Из истории мы знаем, как заселялась Америка европейцами. В первую очередь, это были энергичные люди, склонные к авантюризму, любопытные и импульсивные. Вот они то и внесли длинную аллель «гена поиска новизны» в современную американскую популяцию.

Недавно обнаружены два гена, которые отвечают за материнские инстинкты (эти гены так и были названы генами «материнского инстинкта» ). При этом, ко всеобщему удивлению, выяснилось, что оба гена дочки получают от отцов. Животные, у которых гены «материнского инстинкта» отсутствовали, не заботились о новорожденных.

Необходимо подчеркнуть, что, в отличие от генов, ответственных за физические параметры, наличие «больных» генов, формирующих психику и поведение, еще не означает стопроцентную обреченность человека па определенные отрицательные проявления. Во-первых, как правило, не один, а совокупность генов отвечает за душевные характеристики. Между ними существует очень сложное и порой весьма неоднозначное взаимодействие, эффект которого зависит от множества различных факторов. Во-вторых, как считает большинство ученых, психика и поведение человека лишь процентов на 50 определяются генами .

Одним из методов изучения влияния окружающей среды на проявление генотипа является наблюдение за однояйцовыми близнецами. Такой подход в генетике получил название «близнецовый метод ».

Однояйцовые близнецы образуются в результате деления одной и той же зиготы и содержат идентичные геномы. Хотя появление близнецов - довольно редкое явление (считается, что у человека одна двойня приходится па 80-85 родов), тем не менее, имеющихся случаев достаточно для проведения соответствующих исследований.

Одним из наиболее четких способов идентификации человека являются отпечатки пальцев . Характерные «узоры» закладываются у зародыша уже на третьем месяце развития и сохраняются без изменения в течение всей жизни. При сравнении кожных «узоров» у близнецов было выявлено, что они очень похожи, но, что удивительно, не всегда полностью идентичны.

При исследовании ряда других признаков также наблюдали их небольшие вариации у близнецов: цвет глаз и волос, форма уха.

Крупномасштабное сравнение однояйцовых близнецов друг с другом показало, что возникновение таких инфекционных заболеваний , как корь, коклюш, ветряная оспа практически полностью зависит от возбудителя заболевания, а вот полиомиелит и туберкулез определяются кроме того наследственными свойствами человека. В частности, заболеваемость туберкулезом обоих однояйцовых близнецов более чем в 3 раза выше, чем у двух разнояйцовых близнецов.

Исследование близнецов, проведенное в Каролинском институте в Стокгольме, убедительно показало существенное воздействие факторов окружающей среды (курения, загрязнений, питания, образа жизни) на развитие некоторых форм злокачественных заболеваний. Вместе с тем отмечено влияние генетических факторов на возникновение рака простаты, рака прямой кишки и рака груди.

При анализе близнецов удалось выяснить, что умственное развитие также могут объясняться генетически. Если один из пары однояйцовых близнецов слабоумен, то второй оказывается таким же почти всегда.

Российскими учеными было проведено исследование детей-близнецов в возрасте от 7 до 12 месяцев на предмет того, в какой мере генетика и среда влияют на агрессивность, раздражительность, активность и общительность . Оказалось, что первые три черты темперамента находятся под жестким генетическим контролем: агрессивность поведения младенца:на 94 процента определяется его генотипом, активность - па 89 процентов, раздражительность - па 85 процентов. А общительность почти на 90% формируется под влиянием среды, которую создают родители.

Благодаря методу близнецового анализа на генетический уровень вышла и широко обсуждаемая проблема гомосексуализма . Уже имеются достоверные данные, что около 57% однояйцовых близнецов, братьев мужчин-гомосексуалов также являются гомосексуалами. Для женщин-лесбиянок эта цифра составляет приблизительно 50%.

Осознание гомосексуализма как наследственной болезни возможно поможет решить как проблему гомофобии (плохо ненавидеть больных людей), так и проблему агрессивного гомосексуализма (эти люди требуют признания их здоровыми и полноценными, порой даже гордятся своей особенностью). Однако, если рассматривать гомосексуализм как болезнь, как патологию, ситуация кардинально меняется. Трудно представить себе человека, гордо стоящего с плакатом: «Я страдаю шизофренией, поэтому требую к себе уважения, как к полноценному члену общества!».

Согласно современным оценкам, продолжительность жизни человека, также связана с генетическими факторами, роль которых оценивается на уровне 65-70%.

Многочисленные и разнообразные данные позволяют утверждать, что геном определяет многое в нас, но и окружающая среда весьма заметно вмешивается в нашу сущность. Взаимосвязь между генами и окружающей средой ученые иногда сравнивают с заряженным пистолетом и курком. Пистолет не выстрелит, пока не будет нажат курок. Также обстоит ситуация и в клетке, где в качестве заряженного пистолета служит ген, а функцию курка выполняют всевозможные факторы окружающей среды. Имеется и другое сравнение - с карточной игрой: хороший игрок может выиграть и с плохими картами.

Чтобы разобраться в тех многочисленных взаимосвязях, которые существуют между проявлением отдельных вариантов генов и влиянием па этот процесс различных факторов окружающей среды, был создан специальный международный проект - The Environmental Genome Project. Среди множества задач данного проекта главной является, конечно же, изучение влияния окружающей среды па продолжительность жизни, а также на возникновение и развитие различных заболевании человека. В конечном итоге этот проект может оказаться не менее важным и сложным, чем знаменитый и очень дорогостоящий проект по секвенированию генома человека. А в том, что он будет продолжаться по времени значительно дольше, чем геномный проект, нет никакого сомнения.

В настоящее время изучение геномов не ограничивается только картированием генов, стало возможным изучать последовательность расположения нуклеотидов в составе любого гена. Решающим шагом на пути к решению этой проблемы явилось применение особых ферментов рестрикционных эндонуклеаз и разработка метода клонирования генов.

Рестрикционные эндонуклеазы (рестриктазы) ферменты, расщепляющие ДНК в специфических участках нуклеотидных последовательностей, которые они распознают. Эти ферменты обнаружены у многих бактерий. Они определяют и разрушают чужеродные молекулы ДНК, попадающие в клетку, в том числе при инфицировании их фагами или при трансформации. Таких ферментов обнаружено более 100, и каждый из них распознает в ДНК специфическую последовательность из 4 6 нуклеотидов. Каждая рестриктаза способна разрезать двойную спираль ДНК любой длины. При этом образуется серия фрагментов, называемых рестрикционными фрагментами. Сравнение размеров этих фрагментов, полученных при обработке бактериальных или плазмидных геномов (а также ДНК хромосом эукариот), позволяет создавать рестрикционные карты, в которых отмечается локализация каждого разреза участка относительно соседних участков других таких разрезов (рестрикций).

Существенно, что многие рестриктазы вносят разрывы в обе цепи ДНК со смещением на несколько нуклеотидов. Вследствие этого на конце нити одного фрагмента образуется участок, нуклеотидные последовательности которого оказываются комплементарными нуклеотидным последовательностям другой нити с другого конца фрагмента. Такие концевые последовательности, комплементарные друг другу, получили название липких концов. С их помощью образовавшиеся рестрикционные фрагменты будут вновь образовывать кольца в результате спаривания липких концов. Способность рестрикционных нуклеаз разрезать ДНК с образованием липких концов широко используется в технологии создания рекомбинантных ДНК, так как при помощи таких концов можно соединить два любых фрагмента ДНК, если они получены с помощью одной и той же рестриктазы и, следовательно, имеют комплементарные липкие концы. После замыкания последних путем образования комплементарных пар оснований образовавшееся кольцо из фрагментов разных ДНК можно сшить ковалентными фосфодиэфирными связями между противоположными концами каждой нити ДНК с помощью ДНК-лигазы. В этом заключается суть технологии получения рекомбинантных молекул ДНК.

Ранее всего был изучен геном бактериального вируса ФХ174. Е го ДНК состоит из 5400 нуклеотидов и содержит 9 генов. Вирус ФХ174 можно увидеть только с помощью электронного микроскопа, а запись его генетической информации, содержащейся в 9 генах, в виде линейной последовательности через буквы (А, Т, Г, Ц) занимает целую страницу текста. Запись в таком же виде информации, имеющейся в хромосоме животной клетки, составит книгу объемом более 500000 страниц!

Изучение генома человека началось в 80-х гг. XX в. В последующем была создана Международная организация по изучению генома человека HUGO (от англ. Human Genome Organization организация генома человека). Изучением генома человека занимаются ученые США, Японии, ряда стран Европы, России и др.

Основная задача определить последовательное расположение всех нуклеотидов (а их 3,5 109 пар) во всех 23 парах хромосом человека. Предстоит выяснить молекулярные основы наследственных болезней и определить пути их лечения рано или поздно генотерапия станет вполне реальной. Уже сейчас осуществляется ДНК-диагностика более 100 наследственных болезней. После открытия структуры ДНК, гена и расшифровки генетического кода осуществление программы «Геном человека» будет означать самую фундаментальную революцию в биологии и медицине.